TEAM: MEGAHERTZ
ELETTRA ROBOTICS LAB & IIS CCOBIANCHI
ITALY

TEAM PRESENTATION:
· Micheloni Alessandro
· Cantoreggi Federico
· Bellorini Matteo
· Dal Molin Luca
· Vitale Marco
· Mentor: Raimondo Sgrò
· Coach: Marcodini Filippo, Conti Christian

Mega Hertz is our team's name, it's inspired by radio waves and Guglielmo Marconi, the famous Italian scientis. The group consists of 5 students of electronics and IT at the Lorenzo Cobianchi Institute of Verbania. Everyone is assisted by professor Raimondo Sgrò and by 2 associates of ERL of Domodossola.
The group has been participating to robotics competitions for years, acquiring more experience. Thanks to our victory at RomeCup 2017 we qualified for Nagoya's world championship.
We often met up to work on the two robots, improving them on aspects such as mechanism, trials, various tests, software and much more.

Our team is organized in the following way:
Bellorini Matteo: software, electronics, project manager
Micheloni Alessandro: firmware, mechanics	
Cantoreggi Federico: electronics, mechanics	
Dal Molin Luca: software, strategy
Vitale Marco: software, firmware

INDEX
1. Introduction and general robot structure
2. Logic and behaviours
2.1 Omnidirectional movement
3. Sensors on board:
3.1. Compass
3.2. Ultrasounds
3.3. Camera
3.4. Line sensors
3.5. Proximity sensors
4. Motors and Mechanics
5. Control unit
6. Dribbler and kicker
7. Software
8. Debug panel
9. Photogallery

1. 1 – Introduction and general robot structure
The robot who arrange our team are Viper II and Viper III, with wich we took part in Lipsia’s world champonship last year and in Romecup 2017.
Compared to Lispia we have changed the motherboard, at first designed for working with IR sensors, adapted to the Pixy camera that we use for recognize the new orange ball. We have also implemented a servomotor that we use for moving the camera along the orizontal axis in order to augment the field of view of the camera.
After the Romecup, we have introduced some hardware and software improvements. Particularly, we have implemented another servomotor for the vertical movement of the camera and we have also changed its lens. Therehave also been introduced new proximity sensors for recognizing the ball when it’s near to the robot. All of this changes are finalized to improve our field of view. Another important change is the addition of the fifth line sensors that allows us to have a better resolution on the front of the robot, reducing the possibility to get out of the playing field.

Robot general block diagram.
[bookmark: _GoBack]

The robots are made of various parts, organized on 3 polycarbonate disks.
The centre of all the information, where data arrives and where all the commands come from is the motherboard. On Viper 2&3 the microcontroller is a PIC 18F66K80. Particularly the processor have 64k of memory and it has 54 GPIO. The processor, among the peripherals that we utilize, has 4 PWM modules, useful for controlling the motor, two serial ports and an I2C module.
The robot has the following controls:
· Programming selector
· Strategy selectors
· Command and calibration buttons
· Signal LED
· 16x2 LCD Display
The motherboard handles various sensors:
· Compass
· 4 Ultrasound Sensors
· 5 Line Sensors
· Pixy Camer
· 6 IR Proximity Sensors (3 implemented)
· 1 Touch Sensors.

Line sensors are handled by another processor that, like we said, is integrated in the motherboard. Compared to the old version we used the PIC 18F2321, that have an internal oscillator.
There are one connector for BlueTooth modules as well, to communicate with the other robot and for debugging. This is very useful to see the sensors' state in real time and find problems or any malfunctioning. The BlueTooth module is managed by one serial port, the second one is used for transmit the moving command of the servomotor to an auxiliary board.
In the structure's central plane you can find:
· The Ultrasounds sensors
· The capture roller
· The "boost" circuit for the electromagnetic kick
At the lowest plane we have the motors, the kick system and the line sensors.
On the borders we have two distinct power supplies: Control logic 7.4V LiPo (the motherboard provides 5V and 3.3V to the peripherals) and power supplied by a 11.1V LiPo.
All the structure is studied and projected with the purpose of remaining in the standards imposed by Robocup, such as the limitations in height, width, weight, ball capture and shoot.

	PIN
	I/O
	FUNZIONE (define)
	PIN
	I/O
	FUNZIONE

	RA0
	AI
	ULDX
	RD0
	DO
	M1_A

	RA1
	AI
	ULSX
	RD1
	DO
	M1_B

	RA2
	AI
	UL FRONT
	RD2
	DO
	M2_ A

	RA3
	AI
	UL REAR
	RD3
	DO
	M2_ B

	RA5
	AI
	VELOCITA’
	RD4
	DO
	M3_ A

	
	
	
	RD5
	DO
	M3_ B

	RB0
	DI
	INTLIN
	RD6
	DO
	M4_ A

	RB1
	DI
	LIN_AV_DX
	RD7
	DO
	M4_ B

	RB2
	DI
	P_AVVIO
	
	
	

	RB3
	DI
	SEL 1 AD_SEL
	RE0
	DO
	D1 LED_ON

	RB4
	DI
	SEL 2 ARIETE
	RE1
	DO
	D2 LED_PWR

	RB5
	DO
	PWM1
	RE2
	DO
	D3 LED_UL

	RB6
	DI
	LIN_AV
	RE4
	DI
	SW2 P_BUS

	RB7
	DI
	LIN_IND
	RE5
	DI
	SW3

	
	
	
	RE6
	
	RX2

	
	
	
	RE7
	
	TX2

	
	
	
	
	
	

	RC0
	DO
	RULLO
	RF0
	DI
	IR0

	RC1
	DO
	LANCIO
	RF1
	DI
	IR0DX

	RC2
	DO
	PWM2
	RF2
	DI
	IR0DX2

	RC3
	DI
	I2C SCL (BUS)
	RF3
	DI
	IR0REAR

	RC4
	DI
	I2C SDA (BUS)
	RF4
	DI
	IR0SX2

	RC5
	DO
	BUZZ
	RF5
	DI
	IR0SX

	RC6
	DO
	PWM3
	RF6
	DI
	

	RC7
	DO
	PWM4
	RF7
	DI
	

	
	
	
	
	
	

	RG3
	
	TX1
	RG0
	
	RX1

	RG4
	DI
	TOCCO
	RG1
	DI
	LIN SX

	
	
	
	RG2
	DI
	LIN DX

Input/Output motherboard pins
2 – Logic and behaviours
The basic idea was to have two identical robots with interchangeable roles, that can communicate with each other. They are Viper II & III that in the last year received an important upgrade:
· hardware, a new motherboard, a new camera for recognizing the ball and the implementation of the fifth line sensors.
· Software, for improve the communication among the players.
As we've said, our robots are programmed to communicate with each other as well; in fact they have bluetooth modules mounted on board which let them exchange information, this is very important for our strategy.
In particular, if both the robots are far from the ball, they can both act as strikers. The first to find itself near it, sends a ball possession message to the other, who will consequently go back to defence.
Or if a robot is already in defence it sends a goalkeeper message to the other that don’t come back to defence avoiding a double defence foul.
It is also possible to set some strategy variants on the robots, in particular:
· Battering ram start
· Attack or defence mode
The first lets the robot quickly go towards the opponent, while the latter, modify the waiting cycles without the ball before go back to defence and also the same return routine.
Besides this function we have another very useful manoeuvre: the "Veronica". This move lets us bypass an opponent without letting him near the ball. This is utilised when the robot perceives it has the ball but in front of him there is an opponent robot. In these conditions the robot carries out various samplings of the environment and, though some calculations, it is able to decide whether to pass from the left side or the right side of the opponent.
There are, however, other manoeuvres that can be used during the match; the robot is in fact equipped with a capture roller, with the purpose of taking the ball to score a goal.
The field is divided into 4 areas:
· Central area facing the goal
· Side wings near the goal
· ¾ field wings
- ½ field wings
When the robot is near the goal but it is farm from the centre, it tries moving 45 degrees backwards towards the centre to make sure it can at least try to score a goal. In this case the robot will go at its maximum speed also shooting with the kicker.
Instead, if the robot has the ball but it is very far from the goal we have two different cases; the first case has the robot in the centre of the field, in which case it will go at maximum speed towards the goal. In the second case the robot is decentralized, in which case the robot will change from a fixed orientation to a variable one, so that the closer it gets to the goal, the more angled it will be, facilitating the goal.
2.1 – Omnidirectional movement
As we said, the robot's movement is omnidirectional. On the motherboard of our robots we have 4 PWMs completely independent, which lets us control the omnidirectional movement in a complete manner.
If we break up the 4 motors' velocities on the two axes, assigning the positive sign to the clockwise direction we obtain:

At this point, we must force the robot not to rotate:
V1 + V2 + V3 +V4 = 0
As you can see, the system has 3 equations, but it also has 4 unknown quantities, so the resolution has to be done by hand case by case, assigning a value to one of the 4 components.
Solving the equations for the cases we need we obtain:
	
	
	pwm1
	pwm2
	pwm3
	pwm4

	
	Max
	
	
	
	

	0
	0,354
	254,92
	-254,92
	-255,00
	255,00

	30
	0,5
	255,00
	-74,69
	-237,62
	57,31

	45
	0,5
	255,00
	0,00
	-255,00
	0,00

	60
	0,5
	255,00
	57,31
	-237,62
	-74,69

	90
	0,354
	254,92
	255,00
	-255,00
	-254,92

The negative sign is achieved by inverting the motor's direction of travel.
Indeed we have upgraded many times the theoretical calculations, because we don’t use an encoder on the motor, so the speed depends on various factors
3. Sensord on board
There are various sensors on the two robots, improving their performances and letting them interact with the playing field.
3.1 Compass
The compass sensor, CMPS03 board by Devantech, is based on the Philips KMZ51 magnetic sensor. It is able to provide the data regarding the position through a PWM exit or through the I2C protocol. We chose the latter solution because it granted more safety thanks to the digital transmission, also the I2C BUS can be utilised for more than one sensor, consequently saving in-out pins. The latter is a serial protocol that takes two lines; SDA, line relative to data transfer and SCL, the line for the clock. The evnts that can happen on the line are: START (start the transmission), STOP (closes the transmission), RESTART (restarts the transmission).
This protocol needs a device to serve the other (Master-Slave): in our case the microcontroller will be the master, while the compass is the slave.
The function implemented by our program is the following:
void CMPS03(void)//Routine per CMPS03 Restituisce in BUS il valore
{
 	{
	StopI2C(); // per resettare
 	IdleI2C();
	StartI2C(); // Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.
 	IdleI2C();
	WriteI2C(0xC0);	//Address for write
	IdleI2C(); 	
	WriteI2C(0x01);
	IdleI2C();
	StopI2C();
	IdleI2C();

	StartI2C(); //
 WriteI2C(0xC1);
	IdleI2C();
	BUS = ReadI2C();
	IdleI2C();
	NotAckI2C();		
	IdleI2C ();
	StopI2C();
	IdleI2C ();
 	}
 } //CMPS03

3.2 Ultrasounds
4 We installed on the two robots, two analogical ultrasound sensors called MaxBotix EZ4. They are ultrasound sensors with single capsule that provides the given distance, using analogical voltage.

Ultrasonic sensor EZ4
This kind of sensor presents a very narrow and precise beam, and it can be read through the A/D converter on the microcontroller:
void LEGGI_ULFRONT (void)
{	ADCON0 =0b00001001;
 	ADCON0bits.GO = 1; // Start conversion
	while (ADCON0bits.GO); // Wait conversion done
	APP_H = ADRESH;
	APP_L = ADRESL;
	ULFRONT = (APP_H << 8) + APP_L; // Read ADC registers and convert to 0-1023 integer
}

We had an important problem with this sensors that altered the reading of the values. It was GND noise coming from the motor. For deleting it we have to perform an intervention on the electric points of the motor GND.

Noise on ultrasonic sensor channel

Back of the Viper III motherboard after the intervention
3.3 Camera

Pixy camera mounted on the robot. We can see the servomotor for the horizontal movement

For recognizing the orange ball we decided to use a CMUcam that, after setting the colour to identify, send us the coordinates X,Y and the object dimension. That allows us to know where the ball is and which manoeuvres do for reaching it.
The camera is mounted on a cantilever support moved by two servomotor that allow it to turn horizontally and vertically. When the ball exits from the field of view of the camera, the servomotor turn all the system to the last know position of the ball.
The servomotor are moved with a PWM protocol controlled by a Polulu board that talk with the motherboard with a serial protocol, while the camera transmit is information with the I2C protocol.

Polulu Microservo board
The board used for the control of the servomotor is a Polulu Microservo that is able to handle until 8 servomotor and it’s drived with serial port.
The camera interface is very challenging for the processor because we must try to catch the synchronism, and only after that special character we are sure that the data are transmitted in the right order.
This function deals the processor for a long time, furthermore we have to disable the interrupt calling of the line sensors because the interrupt was cause of a block in the camera reading. Now we test directly the interrupt flag for reading the line event.

void LEGGI_CAM(void)//Routine per scheda palla Restituisce in DIR E FORCE il valore
{
	SYNCL=0;
	SYNCH=0;
	CONTCAM=0;

	StopI2C(); // per resettare
	IdleI2C();

	PIPPOCAM:
		StartI2C(); // Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.
		IdleI2C();
		WriteI2C(ADDR_CAM);	//Address for write
		IdleI2C();

	//Zona di aggancio trama
		SYNCL = ReadI2C();
		IdleI2C();
		AckI2C();
		IdleI2C();
		SYNCH = ReadI2C();
		NotAckI2C();
		IdleI2C ();
		StopI2C(); // per resettare
		IdleI2C();
		CONTCAM++;
		if (SYNCH==0 && SYNCL==0 && CONTCAM>200) //Timeout di lettura
		{
			SIGH=0;
			SIGL=0;
			XL=0;
			XH=0;
			YH=0;
			YL=0;
			DIR=0;
			CECKL ='O';
			CECKH ='U';
			goto FINECAM;
		}
	if (SYNCL != 0x55 || SYNCH != 0xAA)
	{
		if (INTCONbits.INT0IF==1)
		{
			EVENTO_LINEA(); //leggo il flag delle interruzioni
			goto FINECAM;
		}
		goto PIPPOCAM;
	}

//Fine zona di aggancio trama (trainset in cascata)
	StartI2C(); // Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.
	IdleI2C();
	WriteI2C(ADDR_CAM);	//Address for write
	IdleI2C();
	// leggo caratteri a cascata (dati in discesa)
	SYNCL = ReadI2C();
	IdleI2C();
	AckI2C();
	IdleI2C();
	//Lettura di tutti i dati dal bus i2c//
	NotAckI2C();
	IdleI2C ();
	StopI2C(); // per resettare
	IdleI2C();

	APP_H = XH;
	APP_L = XL;

	// Feauture calcolo della grandezza riconoscimento palla
	ALTPAL = HL; // Altezza riconoscimento palla
	LARPAL = WL; // Larghezza riconoscimento palla
	//END CALCOLO PALLA

	XC = ((APP_H << 8) + APP_L);
	YC = YL; //la y è minore di 255
	if (YC==240)
	{
		YC=239; //elimino l'asintono della ctg
	}
	YR = (240-YC); // Y relativa -(YC-240)
	XR = (XC-160); // X relativa
	TAN = (XR/YR); 	// in realtà è la cotangente, più comoda
					//fornisce l'angolo rispetto all'asse y
	if (TAN>=(-0.3) && TAN<=0.3) //la palla è centrata
	{
		DIR=8;
	}
	//Calcolo della direzione in base alla cotangente//
	FORCE=YC;
	FINECAM:; // Esco dalla funzione
} //LEGGI_CAM

Servomotor for the vertical movement (tilt)

As already mentioned, for this tournament we have added a second servomotor for the vertical movement of the camera, that improves our depth of vision
3.4 Line sensors
For the recognition of the field's edge lines we use a P18F2321 microcontroller programmed in assembly language. We use five analogic inputs to read values from the sensors on the robot's sides. Five variables are used to memorize the thresholds during calibration, said thresholds will be read when the program starts, the value of which, once converted, will be able to be seen on an LCD.
One at a time, the channels corresponding to the five sensors are selected and compared to the thresholds and if their value is greater, the logic state will be put to high, indicating the robot is on a white line, otherwise its value will remain zero. If at least one of the sensors is high an alarm flag is activated, the sensors' values can be read through an LCD, letting us verify the correct behaviour of the sensors.
In case we want to, it is possible to calibrate the sensors to make sure they can see the lines, to complete this operation in the correct way it is needed to first acquire the minimum values of the five channels, values that will be saved in the respective variables. Successively the maximum values will be acquired and stored in the respective variables aswell.
Finally, the five thresholds will be calculated. To do this the maximum and minimum values will be saved in two temporary variables, utilised if they are switched, then the minimum will be subtracted from the maximum (it the result is negative the two values are switched). The newly obtained value will be divided by two and summed to the minimum value, thus obtaining the threshold which will be saved in the corresponding variable, this process is done for each one of the five thresholds.
This is a portion of the assembly code of the line sensors board:
;-------------------
;lettura canale 0 AVANTI
;-------------------

	CLRF	TEMP		;all'inizio azzero la variabile temporanea

	CALL	SEL_CH0		;selezione canale analogico 0
	CALL	ACQUIS		;acquisizione valore
	MOVWF	VALORE
	MOVF	SOGLIA1,W
	SUBWF	VALORE,W	;confronto il valore acquisito con la soglia corrispondente	
	BTFSS	STATUS,C	;se valore>soglia il bit corrispondente in temp va a 1
	GOTO SENS_0
	BSF	TEMP,0		;altrimenti rimane a zero
;	BCF	PORTC,7		;altrimenti rimane a zero
	BCF	PORTC,0
	GOTO FINESENS_0
SENS_0
	BSF PORTC,0
;	BSF PORTC,7
FINESENS_0

Electric scheme of the line board

3.5 Proximity sensors
We use the comparators on the motherboard for reading 3 IR proximity sensors. Despite the servomotor movement when the ball is behind the robot we can’t see it, so, for avoiding the possibility of an auto goal, we have added this sensors in order to reading the ball when is behind the robot.

Electric scheme of the IR proximity sensors

4 – Motors and mechanics
As we said, the robot has three planes, realized with three polycarbonate disks, made with a CNC milling machine. On the lower disk, fixed with "L" supports, there are four Maxon motors, arranged at 90° the grant omnidirectional movement. Compared to last year both Viper II and Viper III use 540rpm Maxon motors. The most important feature, though, appears to be the inductive component that makes them more reactive to the variation on current and so it’s more easy to stop them.

VIPER III's lower frame

VIPER III's frame CAD drawing
The wheels were designed and made by us: we inserted 28 aluminium washers in a brass ring, which was the put between two 3D printed shells. Thanks to the higher speed, the diameter of the wheels was reduced to 5 cm, lowering the lower frame and increasing the stability of the robot.

Wheels under construction and completed
The wheels are attached to the motors through an aluminium hub with a 4mm hole.
The three polycarbonate disks are separated from each other by four aluminium spacers, also made by us, turned, pierced and threaded.
As already said we used two servomotors for increasing the field of view of the Pixy camera. They are positioned on the same base of the camera. The first rotates the base itself, while the second raises and lowers the camera through a bracket that we use for reducing the motor work.

Base of the servomotors and camera

3D drawing of the bracket

3D drawing of the dribbler’s blocks

3D drawing of the Pixy support

Dribbler’s pulley

5 – Control unit

Electronic outline of the robot's motherboard. On board the AVRm some controls and the 4 motors' driver bridges.
As we say, the motherboard mount a 18F66k80 processor, provided with 54 GPIO organized on the ports A, B, C, D, E, F, G.
Besides these and the Vss and Vdd power supplies, you can find the MCLR pin, which can be used as a reset terminal. Furthermore you can find the OSC1 and OSC2 pins dedicated to the oscillator, which is a 20MHz quartz one.
The use of this processor has let us the possibility of evaluate a large number of controls and signals, but mostly it let us handle the 4 motors with 4 distinct PWMs.
On the motherboard there are two voltage regulators: 7805 which provides the 5V supply to the peripherals and to the micro, and a 3.3V regulator for the peripherals needing it. On board is also present the bus for I2C communication with the related pull up resistances, and the ICSP terminals for programming the microcontroller.

Mother board serigraphy

You can also find the following blocks:
· Motors driver
· Capture roller driver
· Auxiliary processor for line sensors
· 6 threshold comparators, 3 unused and 3 used for IR proximity sensors
The presence of the 3.3V regulator is mainly tied to the fact that we wanted to implement a vision board realised by us, based on a STM32F4 processor, we are currently working on this project.
The board can also host two BlueTooth modules, thanks to the two serial ports the micro has. This lets us dedicate a module to the communication between robots, while the other is used for debugging, but now one of the two serial ports are used for pilot the Polulu board.
We came across a big problems on the ultrasounds, in particular left ultrasound and back ultrasound. The two sensors were connected to the motors GND and so are subjects to ground noise. We have made a manual modification, we cut the back ultrasound link to the GND and we made a link to the logic GND, while for the left ultrasound we have added another link for the GND for reducing the resistance.

Electric scheme of the BlueTooth board

The new motherboard

CAD immage of the motherboard

6 – Dribbler and kicker
The electromagnetic kick device takes advantage of the strong current discharge coming from a capacitor, previously charged with roughly 70V. To bring the capacitor at such a voltage level, we use a step-up (Boost) type circuit, made by us.

Electric scheme of the boost converter

This circuit is a DC-DC converter with an output voltage greater than the input one, while the output current will be a fraction of the input one because the power (V*I) must be the same.
The principle of operetion of this converter consists of two different states:
· In “on” state, the S commutator is closed, causing an increasing of the current in the inductor;
· In “off” state, the S commutator is open and the current travel across the diode D, the capacitor C and the load R. This cause the transfer of the energy accumulated during on state from the inductor to the capacitor.

In this way, the current that travel across the inductor is used for loading the capacitor to the desired voltage.
This year we re-drew the circuit, passing by TL494 to UC3842, folloeing a series of malfunction at the MosFet.

Electromagnetic kick boost board electronic scheme
Physically, the solenoid is located on the front part of the inferior plane, it is contituted by a copper wrapping wrapped around a PVC tube. Inside of it slides a piston made of half iron and half PVC. When the reel is actuated the magnetic field attracts the piston, hich comes out from the tube's fron end hitting the ball.

Solenoid construction phases

The board, on the contrary, is located in the central plane, while the 4700uF capacitor is in the lower part of the robot.
Therefore the freed energy is equal to:

Hence, it is possible to adjust the kick's power, operating on the boost's voltage.
Regarding the capture roller, it’s made by rubber rollers on metalic cylinder, which allow a good grip. The motor that rotates the roller is a Maxon fixed on the same support, a strap grants the transmission between the motor and the dribbler.

Capture roller in detail
From an electronic point of view, the roller's motor is controlled by and On-Off operating MOSFet, situated on the motherboard's edge.

7 – Software

The robot's software is written in C with the MPLAB 8.80 IDE, compiled with the C18 compiler which "translates" the C source code in machine language to load it on the robot.
The program has 4 main parts:

· Inputs and registers setup
· Sensors and camera reading
· Calculation and interpretation of read values
· Robot movements

As we said the first part sets up the inputs and the register, here we can associate a pin with a certain sensor or signal, we can also adjust all the pic's characteristics like processor speed and working mode.
At this point we enter the second part of the program where all the sensors are read, both the ones on the board and the ones communicating with it through the I2c but. After reading the Pixy and the compass, too, the robot proceeds with data elaboration to decide which direction is the best to go to approach the ball or go around it. If the ball is distant, the robot will move towards it, but as it gets closer the robot will try to get around it to capture it with roller, if the camera don’t see the ball and the last know position was at the border of the camera i twill be turned by the servomotors in order to re-locate the ball. This part of the software is all made with a "switch" construct that chooses the best manoeuvre basing on the received data.
Here's a small part of the program:
case 8:
//		if (AD_SEL == 0) //sono in attacco
//		{
		AVANTI();
//		}
		break;

	case 4:
//	case 16:
		if (PORTIERE == 0) //non sono in porta
		{
			if (FORCE >= PALLA_NEAR) //VICINA
			{
				INDIETRO(); //INDIETRO
				break;
			}
			else
			{
				SUDOVEST();
			}
		}
		else //difesa
		{
			SX();
		}
		break;
As you an see, besides the direction, the choice the robot makes is based on another factors, the force that is elaborated by the distance of the object read by the camera.
There is another factor that is given by the IR proximity sensors in the back of the robot. In this way, the robot can recognize the ball during the defensive return manoeuvre. We decided to use this sensors because the camera can’t see the ball behind the robot and otherwise there are the possibility of an autogoal
Once the most appropriate movement is chosen the pic sends 4 different PWM values to the 2 double ports. The PWM value depends on both the direction and the correction value needed to maintain the right trajectory.
Here's an example of the Forward manoeuvre, with four PWM channels:
//MANOVRA AVANTI compensata
void AVANTI(void)
{
	PORTD = M_AVANTI;
	FLAG_DIR=1;
	PWMDX = VEL*(350+(ERR*K_BUS_H));
	PWMSX = VEL*(350-(ERR*K_BUS_H));
	SetDCPWM5(PWMSX); //su 1024 M1 SX
	SetDCPWM2(PWMSX); //su 1024 M2 SX
	SetDCPWM3(PWMDX); //PWM M3 DX
	SetDCPWM4(PWMDX); //PWM M4 DX
}//AVANTI
The other part of the program regards ball possession, namely all the manoeuvres that are executed when the robot has the ball, in these situations, it orients itself through ultrasounds.

8. Debug panel
In order to make sure all the sensors work alright, we made a debug panel using the Just Basic programming language.
The robot, when in debug mode, sends an "ok" string though its second bluetoot module, followed by one or two characters (depending on the value type) for each one of the variables we chose to check, then repeats doing this while always updating the values. At this point a computer running the program can read this data from the COM and it is then printed on the screen on a convenient form. While simple, this program is a very straight-forward way to check what’s going on in the robot's "mind" and it makes spotting a sensor’s malfunctions a much easier task.

The debug panel's interface

10. Fotogallery

Viper 2 & Viper III at RoboCup Junoior 2016

Viper 2 & Viper III at Romecup 2017

Viper 2

Viper III with shell

Our group at the Romecup 2017

image6.wmf
(

)

4

3

2

1

2

1

V

V

V

V

Vx

+

-

-

=

oleObject1.bin

image7.wmf
(

)

4

3

2

1

2

1

V

V

V

V

Vy

+

-

+

=

oleObject2.bin

image8.png

image9.png

image10.jpeg

image11.jpeg

image12.emf

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.png

image22.png

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.png

image31.png

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.wmf
2

2

1

CV

E

=

oleObject3.bin

image37.jpeg

image38.png

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image1.jpeg

image43.jpeg

image2.jpeg

image3.jpeg

image4.jpeg

image5.jpeg

